
Rebuilding a Nameserver Database
In 24 Easy Steps
December 13, 1988
by Steven Dorner
Computing Services Office
University of Illinois at Urbana-Champaign
Introduction
At the beginning of each semester, it is necessary to rebuild the database used by the CCSO Nameserver.
The purpose of this annual ritual is to add to the database students and staff members who have joined the
University since the last database was installed, and also to remove those who have left.
The process could in theory be done on a running database through use of the Nameserver add, delete, and
change commands. This approach has several drawbacks: due to indexing demands, it is slow; ph perfor-
mance suffers tremendously during the process; deleted entries are only marked as deleted, not removed
from the database. In order to avoid these things, rebuilding of the nameserver database is done by first
dumping the contents of the database into ASCII files, then combining these files with files produced by
reading the tapes supplied by AISS.
This method is not without its drawbacks. It takes a long time, it involves many steps, the nameserver data-
base has to be locked throughout most of the process, and it takes quite a bit of disk space. On the positive
side, the steps themselves are usually fairly simple, and, since the build is taking place separately from the
installed database, it can be done on any convenient machine with lots of processor and disk space.
Overview
The process begins with three databases; the extant Nameserver database, the Staff directory tape, and the
Student directory tape:
Figure 1. The Starting Point
The extant database is locked, and three sets of data are extracted from it; the extant students, the extant
staff, and other entries:
Figure 2. Steps 7-11
Then, the Staff tape and the Extant Staff are merged, as are the Student tape and the Extant Students. Dur-
ing this merge, students or staff members appearing only in the extant database, and not on the tapes, are
deleted.
Figure 3. Steps 1-6 and 12-13
The Staff and Student databases are now merged; this is to avoid duplicating entries for students who hap-
pen to be employees of the University—these students will appear on both the Staff and Student tapes.
Figure 4. Steps 14-16
Now, the resulting data is made into a Nameserver database, and the miscellaneous data taken from the old
database is added into the new database by Nameserver add commands:
Figure 5. Steps 17-24
The new database is ready for use by the Nameserver.
Introduction to the Detailed Description
As complicated as the above description is, it leaves out many steps and details. The rest of this document
will explain in detail everything that is involved in the creation of a new Nameserver database. A few
things that will help you follow the discussion are:
• The process involves many temporary files. These files follow a distinct naming scheme. The pre-
fix "f" means the data pertains to staff; the prefix "s" means the data pertains to students. The prefix
"sf" means the data is student and staff data combined. A postfix or infix "tape" means the data



came from one of the directory tapes. A postfix or infix "old" means the data came from the extant
database. A postfix or infix "new" means the data will be put in the new database.
• At many stages of the process, temporary files may be omitted in favor of pipelines. This will
allow the build to take place in less disk space; you stand to lose more processing time if something goes
wrong, however. The frequent use of temporary files allows automatic "checkpointing" of the build
process; if a step fails, you need only go back as far as the last temporary file to restart. Let your confi-
dence be your guide...
• Most data files are tab-separated lists of fields. Each field begins with its Nameserver field number
followed by a colon. When files are not in this format, a note will be made. During the build process, it is
convenient to have the nameserver prod.cnf file handy for ready reference.
The 24−Way Path to Nirvana
AISS produces 1600 bpi, unlabelled tapes in ebcdic, with the data elements in fixed-width fields, one record
per person, and multiple records per block. The UNIX utility dd is used to read these tapes onto disk, doing
unblocking and character set conversion. Student.tape and staff.tape should be the names of devices on
which the student and staff tapes are mounted.
1. dd ibs=12100 cbs=121 conv=ASCII,lcase <student.tape >s.tape.raw
2. dd ibs=3500 cbs=350 conv=ASCII,lcase <staff.tape >f.tape.raw

Now, the tapes are converted from fixed-width lines into tab-separated lines, and the proper field numbers
are prepended to each field. For students only, the AISS data element that encodes class and college is
expanded into the Nameserver field "curriculum". The programs s.pb and f.pb perform these marvels.
3. s.pb <s.tape.raw >s.tape.id
4. f.pb <f.tape.raw >f.tape.id

Next, the University id’s in the data files are converted by ssnid into random Nameserver id’s. This is done
with the help of the dbm database IdDB, which remembers the mappings from University to Nameserver
id’s. University id’s which have been encountered before will be mapped into whatever they were mapped
into last time; those not appearing in the database will be assigned at random, and the choice recorded in
IdDB. The resulting files are sorted on their first fields, the Nameserver id’s. IdDB should be read in from
tape, the programs run, and then IdDB should be written back out to tape and removed from disk. This will
assure privacy of University id’s.
5. ssnid <s.tape.id | sort >s.tape
6. ssnid <f.tape.id | sort >f.tape

At this point, the running Nameserver database must be made read-only by placing a line beginning with
"read" in the .sta file (/nameserv/db/prod.sta on our system).
7. echo read for database update >/nameserv/db/prod.sta

Once the database is protected from modification, its contents should be dumped with mdump. This dump-
ing is done into four different files; one for staff members, one for students, one for campus units, and one
for other entries. Each dump may contain a different set of fields; for example, the "students" dump con-
tains only fields that cannot be found on the student tape, whereas the "other" dump dumps all fields. In all
cases, mdump outputs the "id" field first for each entry; mdump will manufacture a blank "id" field if none
is present. The "other" dump is constructed to select those entries not selected by the other dumps.
8. mdump students | sort >s.old
9. mdump staff | sort >f.old
10. mdump other | sort >other.old
11. mdump units >units.old

It is now time to reconcile the old data with the new data; this is done with tmerge. The idea is twofold; to
drop from the database persons who do not appear on the new tapes, and to bring along from the old



database any fields that are not found on the tapes themselves (e.g., email addresses).
Tmerge takes four arguments; the name of the file with data from the tape, the name of the file with data
from the extant database, the name of the file for the merged data, and (optionally) the name of a file into
which to put entries from the old database that are not going into the new database. This last argument we
do not use; such entries slip quietly into oblivion.
12. tmerge s.tape s.old s.new
13. tmerge f.tape f.old f.new

Now, the stastu program is used to merge the staff and student files. For staff members who are also stu-
dents, some fields will appear in each file (e.g., address). In such cases, the field from the staff file is given
preference.
14. stastu f.new s.new >sf.new

It is necessary to compute Nameserver aliases for the new database. To do this, we extract the current alias
(if there is no alias, we use the magic cookie "{none}") and the base name for an assigned alias (the last
name and the first letter of the first name). These two items are prepended to each entry from sf.new, and
the whole is sorted into reverse order.
15. aliasprepare <sf.new | sort >sf.prealias

Awk handily if slowly assigns our aliases.
16. awk −f alias.awk sf.prealias >sf.alias

We’re getting close now. Use credb to create a new, empty database. The integer argument is the number
of slots to use in the hash table; we use approximately 5 slots per entry.
17. credb prod 300007

Maked takes our tab-separated ASCII file and makes it into Nameserver .dir and .dov files.
18. maked prod <sf.alias

It is now time to build the index for the database. This step takes many hours (six the last time I did it, on
our dual-processor Gould super-mini, in the dead of night). It is very disk-intensive.
19. makei prod

Now we make an index to the index, to facilitate wildcard searches.
20. build −s prod

This step is optional. If you have been doing the build on a machine with normal byteorder, and intend to
use the database on a machine with reversed byteorder (like a VAX or 80x86), you must reverse the appro-
priate bytes in the database. The border program does this; it may be run on either the normal or the byte-
perversed machine.
21. border prod (Optional)

It is now time to move the database into place; turn off the Nameserver completely, move the files into
place, and let ’er rip.

22. echo stop installing new database... >/nameserv/db/prod.sta
23. mv prod.* /nameserv/db
24. rm /nameserv/db/prod.sta

Now that the database is up and running, we use normal Nameserver commands (via qi) to add in the
entries from units.old and anything interesting from other.old. We then hope that the next semester won’t
come for a long time...
Appendix A
Data Tape Formats and Fields



Students
The student tape consists of blocks of 100 records, each record 121 bytes long. The tape is in ebcdic, and
the layout is as follows:

Start Stop Nameserver
Col. Col. Length Description Field
1 9 9 University id id
10 29 20 name name
30 47 18 street address address
48 65 18 city address
66 70 5 zip code
71 77 7 telephone numberphone
78 118 41 home address
119 121 3 class and college curriculum
Staff
The staff tape consists of blocks of 10 records, each record 350 bytes long. The tape is in ebcdic, and the
layout is as follows:

Start Stop Nameserver
Col. Col. Length Description Field
1 9 9 University id id

10 10 1 padding

11 33 23 last name name
34 48 15 first name name
49 63 15 middle name name
64 78 15 spouse name
79 153 75 job title title
154 178 25 employing department department
179 203 25 office number address
204 228 25 office street address
229 244 16 office city
245 246 2 office state
247 251 5 office zip code
252 254 3 office mailcode address
255 264 10 office phone number phone
265 265 1 suppress home address
266 315 50 home street address address
316 330 15 home city address
331 332 2 home state
333 337 5 home zip code
338 338 1 suppress home phone number



339 348 10 home phone number phone
349 350 2 padding


