
The CCSO Nameserver − Programmer ’s Guide

by
Steven Dorner s−dorner@uiuc.edu

Computer and Communications Services Office
University of Illinois at Urbana

December 22, 1988

updated by
Paul Pomes paul−pomes@uiuc.edu

Computer and Communications Services Office
University of Illinois at Urbana

August 2, 1992

Introduction
It is our intention that other institutions be easily able to use the CCSO Nameserver if they wish to do so.
This document should provide most of the information necessary to use and modify the Nameserver for use
at places other than the University of Illinois.
It is assumed that the reader is familiar with the material presented in The CCSO Nameserver, A Descrip-
tion, and The CCSO Nameserver, Guide to Installation. Those documents describe in some detail what the
CCSO Nameserver is, and of what it consists. Readers familiar with the CSNet Name Server will also
want to read The CCSO Nameserver, Why to see the major differences between CSNet’s server and our
own. This document will attempt to supplement the information in the abovementioned papers, chiefly in
the areas of data structures and file formats, although other topics will be mentioned briefly.

Acknowledgment
The CCSO Nameserver is similar to the CSNet Name Server. This similarity is not accidental; the CCSO
Nameserver is derived from the CSNet program, and still uses a good portion of the CSNet source code.
We are grateful that the CSNet Name Server was made available to us.

Data Structures
Herein described is every structure used by the Nameserver, what it looks like, where it is defined, and
where it is used. From these descriptions, you will infer that the Nameserver assumes that a short is two
bytes, an int is four bytes, a long is four bytes, and a pointer is four bytes. If you intend to run the
Nameserver on a machine that is set up differently, you would do well to take a good look at each data
structure, especially those that deal with the database entries and indices themselves. While an effort has
been made to make the code automatically adjust to differing word sizes, it has never been tried on an
8086, a Harris, or a Cray, so you are on your own. You should be especially careful to ensure that where
the Nameserver uses a long, you give it at least four bytes with which to work.

Converted to portable n/troff format using the -me macros from funky Next WriteNow format (icch).

2 The CCSO Nameserver − Programmer´s Guide

That said, on to the descriptions. Each description includes the declaration of the structure (lifted from the
Nameserver source code).

ARG — Command Argument — include/commands.h
struct argument
{

int aType;
int aKey;
char *aFirst;
char *aSecond;
FDESC *aFD;
struct argument *aNext;
int aRating;

};
typedef struct argument ARG;

Used in
qi/add.c qi/change.c qi/query.c
qi/auth.c qi/commands.c qi/set.c

The ARG structure is used by the Nameserver central server, qi, to hold the arguments to Nameserver com-
mands. Each command is broken into words, and these words put into ARG structures for manipulation by
the server.
The aType field is used to label each argument. This field is formed by or’ing together the appropriate
bits (bits defined in include/commands.h). Meaningful combinations of bits are:

Bits Example aFirst aSecond Explanation
COMMAND query "query" NULL The name of a command.
RETURN return "return" NULL A return or make token.
VALUE smith "smith" NULL A field value or field name.

VALUE|EQUAL email= "email" NULL Make a field empty.
VALUE|EQUAL|VALUE2 name=john "name" "john" A field and a value.

The actual command, token, or values of the arguments are pointed to by aFirst (COMMAND, RETURN,
VALUE) and by aSecond (VALUE2). They point to “malloc-space”,1 and are freed at the end of each com-
mand.
The next argument in the command line is pointed to by aNext, unless we are at the end of the command,
in which case aNext is NULL.
If an argument refers to a field name (such as a field on which to query, or a field to be printed by a query),
aFD will point to the FDESC for the field with the name aFirst (if there is no field with the given name,
the command will be discarded.)
AKey and aRating are used when the argument is a field and value to be looked for during a query.
AKey will be set to 1 if the field in question is an indexed field. ARating is computed for indexed fields,
and is a measure of how easy it would be to find entries based on the argument. The primary criterion here
is lack of metacharacters; length of the value to be looked for is given second priority.

1 Storage dynamically allocated via the UNIX library function malloc(3).

The CCSO Nameserver − Programmer´s Guide 3

CMD — Command Handling Information — ph/ph.c
struct command
{

char *cName; /*the name of the command */
int cLog; /*must be logged in to use? */
int (*cFunc) (); /*function to call for command */

};
typedef struct command CMD;

Used in ph.c.
The Nameserver client, ph, knows its commands from a table. The table is made up of CMD structures. The
elements are pretty straightforward; the name of the command (cName), a flag indicating whether or not
the user must be logged in to use the command (cLog), the function that handles the command (this func-
tion should take two arguments; a pointer to the line the user typed and a flag indicating whether the com-
mand should be executed (0) or detailed help should be printed (1)) (cFunc).

QDIR — Values From A Nameserver Entry — include/qi.h
typedef char **QDIR;

Used in
qi/add.c qi/commands.c qi/lookup.c util/makei.c
qi/auth.c qi/dbm.c qi/query.c util/mdump.c
qi/change.c qi/field.c util/maked.c

Probably the most basic structure of all is the QDIR. It is a pointer to an array of pointers, each pointer
pointing to a field from a Nameserver entry. The pointer array is terminated with a NULL pointer. The
fields each begin with the ASCII value of the fdId field of the FDESC that describes their data, followed by
a colon, followed by the field’s data, and terminated with a NULL byte. The pointer array may come from
any of the suitable storage classes; the storage for the fields is almost always in malloc-space.

directory_entry — Information On the Current Entry — qi/dbm.c
struct directory_entry
{

long ent_index;
DREC *ent_ptr;

};

Used in qi/dbm.c.
The database portion of the Nameserver central server operates on the “current entry”, with commands to
make a given entry current, and to do various things to that entry. The number (in the .dir file) of the entry
so selected (ent_index), and a pointer to the data from that entry (ent_ptr, which points to a DREC), is
kept in a directory_entry structure in qi/dbm.c. The structure is not used elsewhere.

4 The CCSO Nameserver − Programmer´s Guide

dirhead — Header of the .dir File — include/db.h
struct dirhead
{ /* in block 0 of the .dir file */

PTRTYPE nents; /* number of entries in the .dir file */
PTRTYPE next_id; /* the next id capable of being issued */
int hashes[NHASH]; /* # of hashes to find index entries */
int nfree; /* number of free entries in freelist,

* (not currently used) */
int freel[10];

};

Used in
qi/dbi.c util/border.c util/makei.c
qi/dbm.c util/credb.c util/mdump.c

and in the .dir and .dov files.
The .dir file contains the data for Nameserver entries. The first part of that file is the header, and it is read
and written directly to and from a dirhead structure. Thus, this structure is incarnate both in memory
and on disk. (On disk, it is padded at the end to the size of a DREC, 256 bytes.)
Undoubtedly the most often used part of this structure is nents, which gives the total number of Name-
server database entries. It is especially popular with Nameserver utilities, who like to know how many
entries they must process. Both nents and next_id are used when new Nameserver entries are added to
the database. The free count (nfree) and the free list (freel) are not currently being used. The
hashes array is a histogram of the number of indexed strings requiring a given number of applications of
the hashing function. This has little to do with .dir file, but is kept here for convenience.

dumptype — Database Dump Names & Functions — util/mdump.c
struct dumptype
{

char *name;
int (*select) ();
int (*dump) ();

};

Used in mdump.c.
Mdump is a program to dump the contents of the Nameserver database into an ASCII file. Many different
dumps are provided; they differ in which entries are dumped, and what fields are dumped from each entry.
Mdump uses an array of dumptype structures to keep track of the different dumps. Each dump has a
name (name), a function that is called to determine whether or not to include a given entry in the dump
(select, called with a QDIR pointer for the entry), and the action to take for selected entries (dump,
called with a QDIR pointer for the entry). This design permits mdump to be very modular, and has made
customized dumping of the database a trivial task.

DOVR — Overflow of Entry Data — include/db.h
struct d_ovrflo
{

char d_mdata[NDOCHARS];
PTRTYPE d_nextptr; /* ptr to next ovrflo block */

};
typedef struct d_ovrflo DOVR;

The CCSO Nameserver − Programmer´s Guide 5

Used in qi/dbd.c, and in the .dov file.
The .dir file is made up of fixed length records (DREC). Entries that are too long to fit in a DREC are contin-
ued in one or more DOVR records. The DOVR structure is read and written directly to the .dov file, and hence
is used both in memory and on disk. The format is very simple; all but the last word are used for entry data
(d_mdata). The last word (d_nextptr) is either the number of the next DOVR used by this entry, or
NULL if the entry is completed in this block.
DOVR structures are used only when reading or writing entries; most entry manipulation takes place in QDIR
or DREC structures.

DREC — Entry Data — include/db.h
struct d_record
{

PTRTYPE d_ovrptr; /* ptr to ovrflo block (if any) */
PTRTYPE d_id; /* unique id */
long d_crdate; /* date of creation */
long d_chdate; /* date of last modification */
unsigned short d_dead; /* deleted entry */
unsigned short d_datalen; /* length of data that follows */
char d_data[NDCHARS]; /* various strings, variable length */

};
typedef struct d_record DREC;

Used in
qi/dbd.c qi/dbm.c util/credb.c,

and in the .dir file.
Each Nameserver entry (on disk) begins with a DREC. If all the data in the entry cannot be contained in one
DREC (on disk), DOVR structures will be used to contain the remaining data. The DREC is used somewhat
differently in memory. When an entry is read in, the DREC is first read from the .dir file; if there are over-
flow blocks, the DREC is lengthened to accommodate the excess data. Therefore, while a DREC is 256
bytes on disk, in memory it may be much larger.
D_ovrptr is the number of the first overflow block (DOVR) for this entry, or NULL if there are no overflow
blocks. D_id is the number of the DREC in the .dir file. D_crdate is the creation date of the entry, and
d_chdate is the date the entry was last changed; both dates are in seconds since the UNIX epoch (00:00
GMT Jan 1, 1970). If d_dead is non-zero, the entry should be ignored. D_datalen is the number of
bytes of data in the entry; this includes space for NULL terminators for fields, but not space for any of the
header fields or pointers; it is the length of the data alone. Finally, d_data is the entry’s data; on disk, the
data may be continued in DOVR structures; in memory, the DREC will be lengthened as mentioned above.
Within a DREC, the data is organized into fields. Each field is a null-terminated ASCII string, prefixed by a
tag consisting of the fdId of the FDESC for the field (in ASCII) and a colon. There may be an essentially
unlimited number of fields in a single entry. Only one field tagged with any given FDESC should appear in
an entry.

FDESC — Field Description — include/field.h
struct fielddesc
{

short fdId; /* id # of the field */
short fdMax; /* maximum length of the field */
int dIndexed; /* do we index this field? */
int fdLookup; /* do we let just anyone do lookups with this? */
int fdPublic; /* is field publicly viewable? */

6 The CCSO Nameserver − Programmer´s Guide

int fdDefault; /* print the field by default? */
int fdAlways; /* print the always fields ? */
int fdAny; /* the search field/property any */
int fdTurn; /* can the user turn off display of this field? */
int fdChange; /* is field changeable by the user? */
int fdSacred; /* field requires great holiness of changer */
int fdEncrypt; /* field requires encryption when it passes the net */
int fdNoPeople; /* field may not be changed for "people"

* entries, but can for others */
int fdForcePub; /* field is public, no matter what F_SUPPRESS is */
char *fdName; /* name of the field */
char *fdHelp; /* help for this field */
char *fdMerge; /* merge instructions for this field */

};
typedef struct fielddesc FDESC;

Used in
include/field.h qi/change.c qi/field.c qi/query.c
qi/auth.c qi/commands.c qi/lookup.c

Each Nameserver entry is made up of one or more fields. Each field has associated with it a FDESC that
describes the data in the field. A FDESC consists of a unique number that identifies the field (fdId), a
maximum length for the field (fdMax), a name for the field (fdName), some description of what the field
is intended to contain (fdHelp), instructions on how the field is to be merged during updates (fdMerge),
and a set of attributes for the field. The attributes and their meanings are as follows:
fdIndexed Words from this field appear in the Nameserver index (hash table in the .idx file). Any

command that selects Nameserver entries must specify at least one field that is indexed as
part of its search criteria.

fdLookup This field may be specified in a lookup. That is, it is permissible to use the contents of this
field as a method for selecting entries. Most fields have this attribute; it is present for the
rare case where it may be desirable to turn it off.

fdPublic Fields with this attribute may be viewed by anyone. Some fields (like the password field,
for example) are private to the owner of the entry in which they appear, and should not be
shown to the general public. Such fields would have the fdPublic attribute turned off.

fdDefault With this attribute turned on, the field will be printed when a query is issued that does not
specify which fields are to be returned.

fdAlways When enabled, this attribute forces the field’s contents to be always printed in addition to
whatever fields specified by the query.

fdAny This field is always searched by queries.
fdTurn The field may be inhibited from display to the public by putting an asterisk as the first char-

acter of the field. This is not currently implemented usefully.
fdChange The field’s contents may be changed by anyone who knows the password for the entry in

question.
fdSacred This attribute is not in current use, but exists for historical reasons.
fdEncrypt The contents of this field should be encrypted before being transmitted over a network.
fdNoPeople The contents of the field may not be changed for entries that have a type of “people” but

can be for other types.
fdForcePub Force the contents of the field to be Public no matter what F_SUPPRESS’s value is (field

“suppress” in the cnf file).

The CCSO Nameserver − Programmer´s Guide 7

QHEADER — Header of .idx File — include/bintree.h
struct header
{

IDX seq_set; /* pointer to first leaf */
IDX freelist; /* unused */
IDX last_leaf; /* pointer to last leaf */
IDX index_root; /* pointer to first node */
int reads; /* statistics... */
int writes; /* statistics... */
int lookups; /* statistics... */
int inserts; /* statistics... */
int deletes; /* statistics... */

};
typedef struct header QHEADER;

Used in
qi/bintree.c util/build.c util/border.c
util/maket.c

and in the .seq file.
A QHEADER is found as the first part of the .seq file. This file contains a linked list that holds all the strings
in the Nameserver index (.idx file) in lexicographic order. Seq_set is the number of the first chunk of the
linked list (these “chunks” are actually LEAF structures, and may contain one or more ITEM’s, which in turn
contain the index strings and the index number for the strings). Freelist is the number of the first
unused LEAF in a string of unused LEAF’s. The element index_root actually refers to the .bdx file, and
is the number of the top of the tree of NODE’s contained in that file. What follows are statistics; they are not
currently being used.

iindex — Hash Table Index Entry — include/db.h
struct iindex
{

union
{

char ii_string[NICHARS];
PTRTYPE ii_recptrs[NIPTRS];

} i_i;
};

Used in
qi/dbi.c util/build.c util/credb.c

and in the .idx file.
The iindex structure is the basic component of the Nameserver’s hash table index. An iindex struc-
ture is really both variants (ii_string and ii_recptrs) at the same time. From the beginning of the
structure to the first NULL byte, it is a string from the Nameserver database. From the first full word after
the word in which the NULL byte appears, it is a list of entry numbers where the word appears, until the first
NULL word or the last word in the structure. The last word in the structure, if not NULL, is the number of
the overflow block that continues this index entry.

8 The CCSO Nameserver − Programmer´s Guide

LEAF — Element of List of Hash Table Strings — include/bintree.h
struct leaf
{

IDX leaf_no; /* this leaf’s index */
IDX next; /* pointer to next leaf */
int n_bytes; /* number of bytes in data */
char data[DATA_SIZE]; /* data--zero or more ITEMs */

};
typedef struct leaf LEAF;

Used in
qi/bintree.c util/border.c util/maket.c

and in the .seq file.
The LEAF is used to maintain a linked list of all the strings in the Nameserver index (.idx file), in lexico-
graphic order. This list is useful for searching the index itself (as opposed to using the index to search the
database). Each LEAF has a number (leaf_no), the number of the next LEAF in the list (next), some
data (data), and the length of the data (n_bytes).
The data consists of one or more ITEM’s; each ITEM contains the number of the index entry involved, and
the string in that entry. ITEM’s are stored in order within a LEAF; thus, all the strings in the Nameserver
index may be examined in order by looking at each LEAF in order, looking at each ITEM of each LEAF in
order. ITEM’s end with a NULL index entry number; there is no fixed number of ITEM’s in a LEAF.

LEAF_DES — Information About a LEAF — include/bintree.h
struct leaf_des
{

IDX leaf_no; /* start of leaf string */
char max_key[KEY_SIZE]; /* biggest key in leaf string */

};
typedef struct leaf_des LEAF_DES;

Used in util/build.c and util/maket.c.
The LEAF_DES structure is only used while building the .bdx file. Its sole function is to keep track of the
lexicographically greatest string in each leaf. Max_key holds the first four letters of the greatest string,
and leaf_no is the number of the leaf in question.

NODE — Nodes of Tree Built From LEAF’s — include/bintree.h
struct node
{

IDX l_ptr; /* if your name is <= key */
char key[KEY_SIZE]; /* greatest key in l_ptr subtree */
IDX r_ptr; /* if your name is > key */

};
typedef struct node NODE;

Used in
qi/bintree.c util/border.c util/build.c util/maket.c

and in the .bdx file.
Searching the linked list of LEAF’s can be quite time-consuming; the .bdx file, made up of NODE’s, is used
to quickly find the proper starting point for searches. Each NODE contains the first four letters of an index

The CCSO Nameserver − Programmer´s Guide 9

string (key), the number of the NODE or LEAF containing strings less than or equal to the key (l_ptr),
and the number of the NODE or LEAF containing strings greater than or equal to the key (r_ptr). In this
context, a negative number means a LEAF is being pointed to, and a positive number means another NODE is
being pointed to.

OPTION — The Name And Value of a Nameserver Option — include/options.h
struct option
{

char *opName;
char *opValue;

};
typedef struct option OPTION;

Used in qi/qi.c and qi/set.c.
This one is pretty simple. Nameserver options are kept in an array of OPTION structures. Each structure
has the name of the option (opName, in static data), and the value of the option, or NULL if the option is not
set, (opValue, in malloc-space).

suffix — File Suffix and Selector Mask — util/border.c
struct suffix
{

char *suffix;
int mask;

};

Used in util/border.c.
This structure is used to keep track of the six suffices (dir, dov, idx, iov, seq, and bdx) that are used for
Nameserver files. The suffix string is kept in suffix, and a bit that is used for selecting a particular suffix
is kept in mask; a bit pattern is generated from border’s arguments, and mask is anded with that pattern to
see if the file with the particular suffix is to be reordered.

File Organization
The Nameserver database is kept in six files. The files and their functions are:
.dir The first part of every entry is kept in the .dir file. The file begins with a dirhead and has one

DREC for every Nameserver entry.
.dov Those entries too big to fit into a single DREC are continued in the .dov file. Its entries are of type

DOVR; like the .dir file, it begins with a dirhead.
.idx The Nameserver’s hash table is kept here. It begins with a QHEADER, and continues with iindex

structures.
.iov Index entries too long for one iindex are continued in the .iov file (an index entry becomes too

long if the string it references appears in many Nameserver entries; “smith”, for example, has multi-
ple continuations). Each entry is a list of pointers, all but the last being pointers into the .dir file; the
last pointer is a pointer to further index overflow blocks. If the block is not filled, the last valid
pointer will be followed by a NULL pointer. The zeroth entry in the .iov file is empty.

.seq This file contains every string in the Nameserver index, in lexicographic order. It is used during
metacharacter searches, and consists of LEAF structures, each containing one or more ITEM’s. The
first leaf in the linked list is pointed to by the seq_set element of the QHEADER, found in the .idx
file.

.bdx The .bdx file contains a tree that speeds the searching of the .seq file. This tree is made up of NODE
structures; the top of the tree is pointed to by the index_root element of the QHEADER, found in

10 The CCSO Nameserver − Programmer´s Guide

the .idx file.
To better understand the organization of Nameserver files, consider a database consisting of only the fol-
lowing data (the → symbol represents the tab character):

3:Anna Arcola Anderson→0:142 Aspen Avenue Arcadia
Alaska→10:All-Around Architect and
Annunciator→9:Archeology Anthropology and Alimentary
Angles→15:Asking All American Armenians About Asps
Alligators Antelopes and Alphonse Amato→16:Avid Activist
for All-merican Amateur Arrest Association

3:Crispin C Caramel→0:52C Calle Cadiz Cropcount
California→10:Creepy-Crawly-Creature Creator

3:Dexter D Dripslobber→0:224 Deerdropping Drive Denver
Delaware→10:Decimator of Delinquent Drivers

Once we have turned this data into a Nameserver database, named “example”, let’s look up the string
“142”, and see how the Nameserver would go about locating it.
The following diagram shows the relevant portions of the example database. Important addresses and val-
ues are show in solid boxes; interesting but incidental information is shown in dashed boxes. The “#” sym-
bol represents a NULL byte.

The CCSO Nameserver − Programmer´s Guide 11

-----------------------------<i<-------------------------
| |
\|/ |

0x00000 # # # # # # # # # # # # ff ff ff ff | example.bdx
0x00010 c r e f ff ff ff ff . . . ˆˆˆˆˆ|ˆˆˆˆˆ |

ˆˆˆˆˆˆˆˆˆˆ------------->ii>-------------| |
\|/ /i\
| |

-----------------------------<iii<------------- |
| |
\|/ |

0x00100 # # # 01 # # # 02 # # # E6 # # # 0C | example.seq
ˆˆˆˆˆˆˆˆˆˆ-- |

0x00110 1 4 2 # # # # 1D 2 2 4 # # # # 19 | |
| |
| |

-----------------------------<iv<--------------------- |
| |
| |

0x00000 # # # # # # # # # # # # # # # 00 | example.idx
\|/ . . . ˆˆˆˆˆˆˆˆˆˆ-----

0x00300 1 4 2 # # # # 01 # # # # # # # #
ˆˆˆˆ|ˆˆˆˆˆ

|
---------<1<-----------
|
\|/

0x00100 # # # 01 # # # 01 # A8 17 B8 # A8 17 B8 example.dir
ˆˆˆˆˆˆˆˆˆˆ------------------->2>-----------------

0x00110 # # 01 22 3 : A n n a A r c o l |
0x00120 a A n d e r s o n 0 : 1 4 2 |
0x00130 A s p e n A v e b u e A r |
0x00140 c a d i a A l a s k a # 1 0 : |
0x00150 A l l - A r o u n d A r c h i |
0x00160 t e c t a n d A n n u n i c |
0x00170 a t o r # 9 : A r c h e o l o g |
0x00180 y A n t h r o p o l o g y a |
0x00190 n d A l i m e n t a r y A n |
0x001a0 g l e s # 1 5 : A s k i n g A |
0x001b0 l l A m e r i c a n A r m e |
0x001c0 n i a n s A b o u t A s p s |
0x001d0 A l l i g a t o r s A n t e |
0x001e0 l o p e s a n d A l p h o n |
0x001f0 s e A m a t o # 1 6 : A v i d |
. . . |

|
-------------------------<2<---------------------------
|
\|/

0x00100 A c t i v i s t f o r A l example.dov
0x00110 l - A m e r i c a n A m a t e
0x00120 u r A r r e s t A s s o c i
0x00130 a t i o n # # # # # # # # # # #

12 The CCSO Nameserver − Programmer´s Guide

1 Compute the hashing function for the string “142”. The result points to location 0x300 in the .idx
file. In that iindex, we find the string “142”, indicating that this is indeed the iindex we want.
The next full word is 1, indicating that the string “142” appears in the first entry in the .dir file.
Notice that the word after our 1 is a full word of zero; this indicates that there are no more entries
containing “142”.

2 After following the pointer into the .dir file, we find the first database entry (DREC at location 0x100,
after the dirhead). We notice from the first word in the entry (d_ovrptr) that the entry’s data is
continued in the first data block of the .dov file (at 0x100, after the dirhead). The next word
(d_id) confirms that we are indeed at entry 1 in the .dir file, and the half word at 0x110 (d_dead)
tells us by being NULL that the entry is in use. We notice that the data is 0x122 bytes long from the
next half word (d_datalen). And sure enough, our string does appear in the entry, as part of the
address field, between 0x12b and 0x14c.

Suppose that instead of looking for “142”, we were looking for anything beginning with “14”. Since we
wouldn’t know where our strings might hash, we must search the index to find strings that fit our pattern.
i First, we find the head NODE of the tree in the .bdx file. This is kept in the .idx file, in the

index_root element of the QHEADER, and is the fourth word of the .idx file. In our case, this word
is 0, indicating the tree begins with NODE 0.

ii NODE 0 in the .bdx file has as its key “cref” (at 0x10). Our goal string, “14”, is less than “cref”, so we
follow the left pointer (l_ptr, at 0xc). It is −1, meaning the LEAF containing keys greater than or
equal to our goal key is the LEAF 1.

iii The first LEAF (at 0x100) does indeed contain a string that matches “14”; the string is “142”, and we
notice (at 0x10c, which is the p_number of an ITEM) that the string “142” appears in the .idx file as
number 0xc.

iv 0xc translates to an address of 0x300 in the .idx file; the process continues with steps 1 and 2 above.

Statistics and the Nameserver Log
The Nameserver logs every command and error that it sees via the 4.3BSD syslog facility. At our site, we
“roll over” this log weekly, and keep information for one week back. A week’s log file is typically half a
megabyte or so (representing a few thousand Nameserver commands).
We use this log for several things. First, it tells us how much use our Nameserver gets; this allows us to
judge user satisfaction. Second, it tells us where our Nameserver is used from; this lets us know if we are
getting good penetration into the computing community, or if our service is unknown to some parts of the
campus. It also allows us to detect possible abuses of the Nameserver; if a host suddenly makes thousands
of queries, we can look at that host’s commands to see if someone is trying to use the Nameserver as a
mailing list, or overloading it with nonsense queries. Third, it tells us what commands users actually use,
and what commands are gathering dust; that helps us allocate our time to areas of user interest, rather than
spend our time improving something no one cares about anyway. Fourth, It tells us how users are doing
with the Nameserver; if a high proportion of responses for a particular command are errors, it may mean we
need to modify the command to make it more intuitive, or improve our documentation. Finally, it allows us
to see exactly what a user has done when that user comes to us with a problem using the Nameserver. Usu-
ally, the log gives us the information we need to discover the user’s problem.
The program that allows us to (in some measure) accomplish these wonders with the log file is in the subdi-
rectory stats. The nsstats program is invoked by cron(8). Unlike much of the Nameserver, this program is
quite informal, written to serve our needs only; the most apt word to use is “hack”. But we have found it to
be a useful hack, and perhaps you will, too.

nsstats
I’ll present the output from nsstats in sections, each line preceded with a line number, and explain what the
section means. Missing line numbers correspond to blank lines in the output.

The CCSO Nameserver − Programmer´s Guide 13

1 ph stats Aug 10

The first line gives the day for which the statistics pertain (August 10th).
3 4480 sessions from 309 hosts.

The next line totals the number of Nameserver sessions (4480), and the number of different hosts from
which the sessions originated (309).

5 uxa.cso.uiuc.edu 960 (21%)
6 vmd.cso.uiuc.edu 112 (2%)
7 uxc.cso.uiuc.edu 130 (2%)
8 garcon.cso.uiuc.edu 683 (15%)
9 ux1.cso.uiuc.edu 887 (19%)
10 other (304 hosts) 1708 (38%)

This section shows all hosts who had at least 50 Nameserver sessions that day, the number of sessions com-
ing from each, and the percentage of the total number of sessions that number represents. Hosts making
less than 50 queries are lumped together in the “other” category, with the number of such hosts placed in
parentheses after the “other” label (in this case, there were 304 hosts who made less than 50 queries). This
section is a good place to find potential Nameserver abuse; most hosts appearing here should be machines
with a large user-base; single-person workstations making hundreds of queries is quite unusual.

12 308 commands used 18638 times

The next section lists the different commands and how many times they were used. First the total number
of significant Nameserver commands (18638), as well as the number of different commands given (308).
The latter number counts only command names, not arguments; “query john smith” and “query jane doe”
are considered equivalent for this purpose.

14 ph 166 (0%)
15 email 49 (0%)
16 login: 8 (0%)
17 quit 738 (3%)
18 siteinfo 6 (0%)
19 status 118 (0%)
20 answer 58 (0%)
21 attempting 13 (0%)
22 login 146 (0%)
23 clear 39 (0%)
24 Password 7 (0%)
25 fields 33 (0%)
26 id 2532 (13%)
27 query 5141 (27%)
28 change 107 (0%)
29 accting 25 (0%)
30 help 80 (0%)
31 weather 13 (0%)
32 Done 4464 (23%)
33 begin 4480 (24%)

The individual commands are listed, followed by the number of times they were issued, and the percentage
of commands that number represents. Note that some commands (such as “quit” and “id” are automatically
generated once per Nameserver session); one must be somewhat cautious in interpreting the numbers here.

Everything You Always Wanted to Know, But Were Afraid to Ask
The next section answers some often-asked questions about the Nameserver. The information presented is
admittedly fragmentary; it may be useful nonetheless.

14 The CCSO Nameserver − Programmer´s Guide

How Do You Assign Passwords?
The Nameserver tries to be accommodating with respect to passwords. First, find the definition for Hero in
qi/commands.c. If there is no entry with this string as an alias, anyone may use the add command to
add entries to the database, including adding a Hero entry to the database. Once the Hero entry exists, nor-
mal security is in force.
Normal security means that, when a login is attempted to a given alias, the entry is fetched; if a password
field exists in the entry, that value should be used as the Nameserver password. If no password field exists,
the last 8 characters of the id field are used as the password. If no id field is present, the password for the
entry is “secret”. The moral of the story is not to generate an entry with an alias field but no id or pass-
word.

Just What Is the Id Field Anyway?
At the University of Illinois, we use the id field as a unique, immutable tag for entries. When we receive
updated information from our administrative branch, we need to know which entry in our database to which
the information applies. A name is insufficient for this purpose; names not only change, but they can be
ambiguous.
The University already has a unique number for each student, faculty member, or staff member; unfortu-
nately, this number is most often the person’s social security number, and is considered fairly private infor-
mation.

What Field Descriptions Can We Change?
The field descriptions in the supplied prod.cnf are broken into two categories; one that warns against chang-
ing the descriptions in it, and one that bears no such warning. The criteria for splitting the field descriptions
is quite simple; if the number for the field description appears in field.h and is therefore used by number in
the Nameserver source code, the field description is in the first, protected, category. Changes to such fields
must be made with care, and only after looking at how they are used in the source. Changes to fields in the
second category may be made with impunity, provided:
(1) you are willing to put up with inconsistencies you may thereby introduce (for example, shortening

the maximum length of a field may leave entries in your database with values too long in those
fields) and

(2) You don’t change the Indexed property. If you add or remove the Indexed property, you must
rebuild the Nameserver database with makei and build.

