
The CCSO Nameserver − A Description

by
Steven Dorner s−dorner@uiuc.edu

Computer and Communications Services Office
University of Illinois at Urbana

July 26, 1989

updated by
Paul Pomes paul−pomes@uiuc.edu

Computer and Communications Services Office
University of Illinois at Urbana

August 2, 1992

Introduction
This document provides an overview of the CCSO Nameserver. It should give the reader a good idea of the
capabilities, implementation and performance of the Nameserver.

Overview
The CCSO Nameserver is a computer resident “phone book”. It can keep a relatively small amount of
information about a relatively large number of people or things, and provide fast access to that information
over the Internet.1 Here at the University of Illinois, we keep the contents of the “white pages” of our Stu-
dent/Staff Directory as well as other selected information, in the Nameserver.
Unlike a printed directory, the information in the CCSO Nameserver is dynamic. It can be updated at any
time, from any computer on the Internet capable of running the “client” program, ph.2 The Nameserver can
also be taught to keep new types of information, such as electronic mail addresses or office hours, without
recompilation or change to the existing database.
The remainder of this document will examine in somewhat further depth three aspects of the Nameserver;
what it does (Capabilities), how it does them (Implementation), and how well it does them (Perfor-
mance). There are in−depth documents describing some of these aspects of the Nameserver; the interested
reader may refer to the References section for the titles of these other documents.

Capabilities — The Database
The CCSO Nameserver manages a database that consists of many individual entries. Each entry contains
one or more fields, each field consisting of a one or more printable ASCII characters (including tab and
newline). Each field is associated with a particular field description that is used to specify the behavior of
the field. A field description includes a name, a maximum length for the fields it describes, and certain

Converted to portable n/troff format using the -me macros from funky Next WriteNow format (icch).
1 The collection of local, regional, and national networks using the TCP/IP protocols.
2 At present this means 4.[23] BSD UNIX, VMS, VM/CMS, DOS, or Macintosh.



2 The CCSO Nameserver − A Description

properties that determine how the field is used.
There are essentially no intrinsic limits on the size of the database, in number of entries, numbers of field
descriptions, numbers of fields per entry, or sizes of fields.3

Certain fields4 in the database are indexed. Words from these fields can be used as keys to select entries in
the database. Words from any field may be used to refine the selection made by the key fields. The index-
ing scheme used is “double−hashing”, and results in very fast lookups for key fields. The hash table is also
indexed to facilitate pattern matching on the hash table (and hence the database).

Capabilities — The Server
The database resides entirely on one computer and is managed by a server program, qi (query interpreter).
Multiple instances of qi may be executing at any one time; access to the database is controlled by advisory
locks. Any number of processes may read the database, unless a process is writing the database, in which
case all processes must wait for that process to complete its work before beginning their own.

Qi uses a command−reply scheme like that used by FTP.5 It accepts commands from its standard input, and
writes replies on its standard output. Both commands and replies are couched in “netascii”; lines consisting
of printable ASCII characters terminated with a newline (ASCII 10) or carriage−return newline (ASCII 13
ASCII 10) pair. Additionally, the backslash “\” is used to “escape” certain characters, as in the C program-
ming language.6

Commands consist of a keyword optionally followed by one or more arguments or keywords. Commands
include: query for querying the database; change for changing fields in entries; add for adding new entries.
Replies consist of a numerical code ranging from −599 to 599, and additional text. The numerical codes
may indicate an operation in progress (100−199), success (200−299), a request for further information
(300−399), temporary failure (400−499), or permanent failure (500−599). Replies in the range from −599
to −100 indicate that further replies are to be expected for the current command; they otherwise have the
same meanings as their positive counterparts.
The behavior of qi may be modified by use of certain options, accessed by the set command. The number
of available options is small; the most important options are echo, which causes qi to print commands on its
output before executing them, and limit, which allows the user to specify a maximum number of entries to
which a command may be applied.
Qi operates in three different modes; anonymous, login, and hero. Each mode is more liberal than the pre-
vious in the operations it allows, and consequently more difficult to access. Anonymous mode is used to
make queries of public information7 and for a few other innocuous purposes. In anonymous mode, there is
a maximum number of entries that can be viewed with one command; the purpose of this limitation is to
discourage the use of the Nameserver for the preparation of mailing lists. Anonymous mode is used for
most queries of the Nameserver.
To enter login mode, a user must identify himself as the owner of a particular Nameserver entry by giving
an alias (login name) and a password.8 In addition to the capabilities of anonymous mode, login mode

3 Actually there are limits imposed by the 32-bit pointers used throughout the system. Before those limits could be reached,
however, the database would likely be too large to manage.

4 Those whose field descriptions in the .cnf file contain the property “Indexed”.
5 See RFC-959, File Transfer Protocol (FTP), J. Postel and J. Reynolds.
6 The set of such escapes is much more limited than in C; only “\n” for newline, “\t” for tab, “\"” for double-quote, and “\\” for

backslash are allowed.
7 I.e., to view fields whose field description contain the property “Public”.
8 Actually the user is asked to encrypt a string using his password, and qi compares the result returned with the result it obtained

by encrypting the same string with the user’s stored password. This is to provide additional security when running qi over networks;
the user’s password is never sent “in the clear” over a potentially insecure network.



The CCSO Nameserver − A Description 3

allows the logged in user to change fields from his or her own entry in the Nameserver.9

Hero mode is entered either by entering login mode as a Nameserver “hero” (superuser) or by running qi
directly from a terminal, rather than over a network. In this mode, all artificial limits are removed; the hero
may change any field in any entry in the database, as well as view as many entries as he wishes. Hero
mode is used mostly for administrative purposes.

Capabilities — Queries
Since most of what the Nameserver does is answer queries, it is fitting to describe queries more fully here.
A nameserver query consists of five elements; the “query” keyword, values for one or more indexed fields,
values for zero or more non−indexed fields, optionally the “return” keyword, and optionally a list of fields
to print from the selected entries. A couple of examples will clarify. First, a plain query; the arguments are
interpreted as requests for words from the name or nickname fields, both of them indexed fields:

qi> query steven dorner
−200:1: alias: s−dorner
−200:1: name: dorner steven c.
−200:1: email: dorner@garcon.cso.uiuc.edu
−200:1: phone: (w) 244−1765
−200:1: address: 181 DCL, MC 256
−200:1: : 1201 W. Washington, C, 61821
−200:1: title: res programmer
−200:1: nickname: Steve
−200:1: hours: 8−4 weekdays
200:Ok.

Here is an example that uses all five elements. The “department” field is not indexed.
qi> query dorner department=computing return name email department
−200:1: name: dorner steven c.
−200:1: email: dorner@garcon.cso.uiuc.edu
−200:1: department: computing services office
200:Ok.

Capabilities — The Client
Usually, the Nameserver is accessed via the “client” program ph. This program makes a connection to a
copy of qi on the machine that keeps the Nameserver database. It then provides assistance to the user of the
Nameserver; it formulates queries, formats Nameserver responses, and provides other conveniences.
Ph operates in two modes; command-line and interactive. In command-line mode, ph forms a Nameserver
query from the arguments given it, sends it to qi, prints the result, and exits. In interactive mode, ph reads
commands from the user, relays them to qi, and prints qi’s responses. The responses are automatically sent
through a paging program. Some commands given to ph are expanded into more than one qi command.
For example, the ph “edit” command first asks qi for the value of the desired field, puts that value in an edi-
tor where the user edits it as s/he pleases, and then issues a “change” command to change the field to its
desired new value.

Implementation — The Source

The Nameserver is written in C (a small parser is written in lex10), and runs on UNIX systems. The client,

9 Actually a user may change only those fields whose field description contain the property “Change”.
10 See Lex−A Lexical Analyzer Generator, M.E. Lesk and E. Schmidt.



4 The CCSO Nameserver − A Description

ph, may be run on 4.[23]BSD derived systems. A version of ph exists for VMS, DOS, Mac, and a limited
version exists for VM/CMS systems.
There were at last count 320,000 bytes of C and lex source code; some 6,000 statements in 63 files. This
source is divided into several distinct categories; qi (230,000 bytes, 28 files, 3500 statements), ph (46,000
bytes, 3 files, 700 statements), utilities (89,000 bytes, 21 files, 1700 statements), and libraries (19,500 bytes,
11 files, 300 statements).
The database and qi reside on a Digital Equipment Corporation VAXServer 3500 running Ultrix.

Implementation — The Database
The database is kept in six files with the extensions .dir, .dov, .idx, .iov, .seq, and .bdx. The .dir and .dov
files contain the actual data. The .idx and .iov files contain the hash table, with pointers into the data files.
The .seq file contains all the words from the hash table, sorted alphabetically, along with pointers into the
hash table; it is used for pattern-matching on the hash table. The .bdx file contains a tree of four-letter
nodes, each node pointing to where entries with those four letters begin in the .seq file; the .bdx file speeds
search of the .seq file.
The .dir file consists of a header and one fixed-length record for each entry in the database. If there is too
much data for one record, the remainder is placed in the .dov file. The .dov file also consists of fixed-length
records, and if one is not enough, the remainder can be placed in more .dov records. Thus, an entry is
really a linked list of fixed-length records, and is not limited in size. It is relatively easy to play with the
sizes of the .dir and .dov records (before compilation and installation of the database) for optimum perfor-
mance. We use a fairly small record size in the .dir file, to minimize space wastage,11 and a fairly large
record size in the .dov file, to minimize linking. Most entries are wholly contained in the .dir file; most of
the rest require only one .dov record.
Each entry begins with some fixed-length information, followed by the fields that make up its data. Each
field is a null-terminated ASCII string. A field begins with an ASCII string that is the id of the field descrip-
tion for that field, and a colon. The field’s data follows, and then the null terminator (ASCII 0). Tagging
each field with its description number means that the database is not sensitive to the presence, absence or
order of the fields. This in turn means that field descriptions can be added to the Nameserver at will, and
the newly-defined fields used, without recompilation or rebuilding of the database (see Implementation —
Field Descriptions below).

.bdx

.

.

.seq

.

.

.idx

.

.

.iov

.

.

.dir

.

.

.dov

.

.

Figure 1. Database Organization

11 Not entirely successfully − see Performance — Database Size below.



The CCSO Nameserver − A Description 5

The .idx file is made up of a fixed number of fixed-length records. Each record that is in use contains a
word from an indexed field, and a set of pointers to the .dir records that contain the word in an indexed
field. Overflow in the .idx file is handled like overflow in the .dir file; the excess pointers are put in one or
more fixed-length records in the .iov file. Words are indexed by computing a hash function. If the selected
location is not empty but does not contain the desired word, the hash function is iterated, until a limit is
reached (implying the failure of the index) or the word or an empty spot is found. If the spot is empty, the
word and a pointer to the entry in which it occurs is placed in the record. If the spot is not empty, a pointer
to the entry is appended to the list of pointers for that word.
The .seq file uses fixed-length records (called leaves) to keep a sorted list of all the words in the hash table
(.idx and .iov files). Each leaf contains up to four words, and a pointer to the next leaf in alphabetical order.
With each word is stored a pointer into the hash table where that word is found.
The .bdx file has records (called nodes) that contain one four-byte key, and two pointers; one to the previ-
ous node in alphabetical order, and one to the following node in alphabetical order. If a particular four-byte
key happens to begin a leaf, that key’s node will contain a pointer to that leaf instead of a pointer to another
node.

Implementation — Queries
An incoming query is first broken down into its component parts. Then, the selection arguments of the
query are checked for indexed arguments. The longest indexed arguments12 are looked up one by one in
the hash table (or, if they contain pattern-matching characters, a search is made through the .bdx and .seq
files for each pattern). The index entries are “anded” together to select only those entries that contain all of
the indexed words.
Next, the selected entries are fetched one by one, and matched against the argument list. This is done for
two reasons. First, the fact that an entry appears in the index for a word says nothing about which field the
word is to be found in; it merely notes that the word does appear. Therefore, it is necessary to recheck
indexed fields, and make sure the words in question appear in the proper fields. Second, the non-indexed
words must be checked, to see that they appear in the proper fields in the entry.
If the entry passes the checks, the selected fields (or a set of default fields) are printed.

Implementation — Field Descriptions
Field descriptions are kept in a file that qi reads each time it is run. This file consists of lines describing
each field, in ASCII, with colons separating the elements in a line. First comes the id number of the field,
then the name of the field and its maximum length. Finally, there is a colon-separated list of properties for
the field.
Since this file is read each time qi starts up, lines can be added to define new fields at will. All subsequent
invocations of qi will be able to recognize and use the fields.
The major properties fields may have are Indexed, Public, Default, Lookup, and Change. Fields marked
Indexed are kept track of in the database’s index. At least one such field must be included in every query.
Fields marked Public may be viewed by anyone using qi in anonymous or login mode. Fields not marked
Public may only be viewed by the entry’s owner in login mode, or by someone using qi in hero mode.
Default fields are printed if no “return” clause is given in a query. Lookup fields may be used in the selec-
tion part of a query; a field not marked Lookup cannot be used to select entries.13 Finally, a user in login
mode in qi may change any of his or her fields that are marked Change.

12 Actually, the longest indexed arguments free of pattern-matching metacharacters. Pattern matches take much longer than
normal index lookups since the .bdx and .seq files must be searched, and since such searches frequently result in a large number of
matches being selected.

13 You might decide, for example, that no one should be allowed to be found by his or her phone number. You could mark the
phone number field as Public (so it could be viewed) but not Lookup (so no one could use it in searches).



6 The CCSO Nameserver − A Description

Performance — Database Size
Our database contains 80,140 entries, totalling 16 megabytes of information. The .dir and .dov files
together are 33 megabytes; nearly half the space is wasted. This percentage could be reduced by reducing
the record size of the .dir file.
The hash table, which has room for 450,001 words, actually contains 157,324 words and 270,784 pointers,
for a total of 1.3 megabytes of hash table. The .idx and .iov files are 19.5 megabytes in size; even allowing
for a large number of empty hash table slots (necessary for performance), most of the space is wasted. As
with the .dir file, reducing the record size in the .idx file would help the situation.
Rounding out the database is 7.2 megabytes in the .bdx and .seq files.

Performance — Speed
To test speed, we took 300 words from different parts of the index, and looked each one up using qi. Qi
found 396 entries in 78 seconds; that is about 1⁄4 second per lookup. Using four letter keys and wildcarding
the rest, qi found 9213 entries in 460 seconds, for about 11⁄2 seconds per lookup.
In actual use over a network, response is slower, since the client program must establish a connection with
the host that has the database. Looking up 100 indexed words in separate invocations of ph took 109 sec-
onds, or 1 second per lookup; 118 entries were found.

Performance — Usage

In a recent week, typical of most weeks, we had 3100 uses from over 70 campus machines.14 By far most
of the commands given were queries (3643). There were also 175 logins, 264 changes, and a few hundred
other commands issued. Of the commands: 58% were successful; 26% were queries that found no entries;
8% were queries that found too many entries; 4% were other errors; 3% were rejected because they
required login mode, but were being given in anonymous mode; and 1% failed due to command syntax
errors.

Further Directions
Overall, we are fairly satisfied with what has been done to date. Ongoing efforts will be centered around
making the Nameserver convenient to use in a distributed environment. This will primarily involve allow-
ing users to specify a server, although some peripheral issues are also in need of resolution.
Additionally, we will make some attempts to remove wasted space from the database and its associated
index; this is not a high priority since the database, for all its wasted space, is still not unmanageably large.

Distribution
The CCSO Nameserver is Copyright © 1988 by the University of Illinois Board of Trustees. Portions of
the software are Copyright © 1985 by CSNet. It is distributed free of charge, and is available for anony-
mous ftp from uxc.cso.uiuc.edu, in the net/qi subdirectory as well as the pub/qi.tar.Z file. The client soft-
ware for UNIX and VMS is available on the same computer, in the net/ph subdirectory and in the file
pub/ph.tar.Z. No support will be provided by the University, and the University is not liable for anything
bad that happens as a result of its use. The software may not be redistributed without permission from
CSNet.

References
UNIX Manual Pages. Manual pages are available on ph(1) and qi(8).

14 It is impossible to get an exact count of the number of machines, since there are some machines that use another computer as
a relay; these machines do not show up in the count.



The CCSO Nameserver − A Description 7

The CCSO Nameserver, An Introduction by Steven Dorner. A brief introduction geared at a new user of ph.
The CCSO Nameserver, Why by Steven Dorner. A recap of the design decisions that made our Nameserver
what it is, including evaluations of some similar systems available when our Nameserver was designed.
The CCSO Nameserver, Server−Client Protocol by Steven Dorner. Full documentation of the language
used between the Nameserver server program, qi, and the outside world.
The CCSO Nameserver, Guide to Installation by Steven Dorner. How to install the programs that make up
the CCSO Nameserver.
The CCSO Nameserver, A Programmer ’s Guide by Steven Dorner. In depth documentation for anyone
maintaining or wishing to completely understand the CCSO Nameserver.
Rebuilding a Nameserver Database In 24 Easy Steps by Steven Dorner. Describes how we build a
database, beginning with raw data we receive from our Administrative branch.

Acknowledgement
Our Nameserver is very similar in function and philosophy the CSNet nameserver. In fact, the database
management code from that nameserver, with some modification, is used in our Nameserver. We are grate-
ful to CSNet that their program was made available to us.


